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“SSH Brute Force Attacks are still prevalent, 
in fact INCREASING.”
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Data Collection

Public Research Facility

X

Legitimate Users & Attackers

“Our unique data aided the development of 
blocking.”

“Provide the means to evaluate effectiveness”
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“root  % is DECLINING”

“Diverse set of usernames”
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- Are there patterns in the usernames utilized by attackers?

- Can these patterns be fingerprinted for effective blocking?
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- Does the characteristics of Dictionary Based Blocking generalize?
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● We simulated DBB on three different sites data (A,B,C) over ten weeks. 
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positives per site.
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“Dictionary Based Blocking  (DBB) does generalize”

“High Blocking Rate with Low False Positives”
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“Dictionary Based Blocking outperforms 
Fail2ban with huge margin”
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● Due to real-time IP blocking and filtered traffic, calculating the exact attack block 

rate is challenging. 

● Evaluate Dictionary Based Blocking effectiveness by comparing attack volumes 

pre and post-deployment.
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DBB had zero FP

Blocks Four-fifths 
attacks missed by 

other defences
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- Does the performance comes from the high number of nodes in 
CloudLab?

NOShort answer is

NO IT DOESN'TLong answer is

- How many nodes (collectors) are required to 
perform effective blocking?
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● To examine the effect of the number of collectors on blocking performance, we 
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“Few collectors can also perform effective 
blocking”
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…..

Paper has more insights.
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